新闻资讯

news

八一建军节 | 致敬所有 中 国 军 人,愿山河无恙,人间皆安

2024 / 08 / 01

1949年6月15日,中国人民革 命军事委员会发布命令,以“八  一”两字作为中国人民解放军军旗和军徽的主要标志。新中国成立后,将此纪念日改称为中国人民解放军建军节。有一种追求,叫精忠报国有一种自豪,叫沙场点兵有一种情愫,叫感恩盛世1927年8月1日,南昌城头一声枪响组建起一支真正属于人民的军队星星之火,自此燎原时光荏苒当硝烟不再、战争远去他们依旧昂然站立在我们身后为我们守护岁月静好给我们满满的安全感当灾难降临他们是熊熊烈焰中逆火而行的勇士沧海横流,多难兴邦阻击疫情,防汛救灾中 国 军人英勇无畏、誓死不退是滔滔洪水中血肉筑起的长堤洪水不退,我们不退!是地动山摇时用生命铺就的生命通道有种前进,叫逆行有种力量,叫中国 军人是狂风暴雨里泥泞裹身仍不放弃的坚定守望面对挑衅,他们决不含糊界线即是底线中国,一点都不能少林海雪原、戈壁险滩他们用忠诚保卫家国边关换来万家灯火、国泰民安同胞有难,无论多远他们都护送你回家祖国永远是你最坚实的依靠他们自信无论征战蓝天,还是驰骋海疆无论奔赴沙场,还是仪仗护卫从来精神饱满、斗志昂扬他们勇敢人民的需要就是出征的命令从不马虎,绝不含糊他们刚毅所向披靡,雷霆万钧拥有压倒一切敌人和困难而不被敌人和困难所压倒的血性他们也会疲倦即使酣睡也永远枕戈待旦他们也有眼泪可能是风雪边关的匆匆一面也可能是拥抱爱人的铁汉柔情他们的每一次挥洒血泪每一次攻坚克难每一次出生入死都是为了把黑暗挡在身后让你我尽享阳光今天的中国 人民解放军正大步走在建设世界一 流军队的道路上从大漠、碧海到蓝天这支队伍变得更精悍、更具战斗力钢铁洪流,空地一体锐不可当,势如破竹百年梦想,国之重器劈波斩浪,迈向深蓝蔚蓝苍穹,有我无敌千里之外,决胜天宇大国长剑,一剑封喉慑战止战,战略王 牌召之即来、来之能战、战之必胜这,就是我们的英雄军队有信心有能力打败一切来犯之敌撼山易,撼解放军难!致敬!威武之师!前进!中国人民解放军 

七一建党节 | 热烈庆祝中国共 产党成立103周年!

2024 / 07 / 01

     时光荏苒,岁月如梭,转眼间我们迎来了七一建党节。在这个特殊的日子里,我们怀着无比崇敬的心情,向伟大的中国共 产党致以最热烈的祝贺,祝中国共 产党生日快乐!建党节精神 “人无精神则不立,国无精神则不强。”精神是一个民族、一个国家、一个政党赖以长久生存的灵魂。一百多年前,中国共 产党的先驱们创建了中国共 产党,形成了坚持真理、坚守理想,践行初心、担当使命,不怕牺牲、英勇斗争,对党忠诚、不负人民的伟大建党精神,这是中国共 产党的精神之源。坚持真理 坚守理想坚持真理、坚守理想是伟大建党精神的灵魂。就是坚持马克思主义科学真理、坚守共  产主义远大理想和中国特色社会主义共同理想。中国共 产党自成立之日起,就把马克思主义和共 产主义鲜明写在党的旗帜上。中国共 产党以马克思主义为立党之本,以实现共 产主义为最 高理想,以全心全意为人民服务为根本宗旨。这是中国共 产党人的根和本。践行初心 担当使命践行初心、担当使命是伟大建党精神的主题。就是牢记初心使命,为中国人民谋幸福、为中华民族谋复兴。习近平总书记指出:“一百年来,中国共 产党团结带领中国人民进行的一切奋斗、一切牺牲、一切创造,归结起来就是一个主题:实现中华民族伟大复兴。”不怕牺牲 英勇斗争不怕牺牲、英勇斗争是伟大建党精神的底色。就是把个人生死置之度外,不畏艰险、敢于流 血、勇于革 命。对党忠诚 不负人民对党忠诚、不负人民是伟大建党精神的品格。是中国共 产党人首要的政治品格和鲜明的境界情怀,就是要在党爱党、在党为党,坚定信念跟党走、心系人民、情系人民,风雨同舟、生死与共。中国共 产党一开始就把全心全意为人民服务作为根本宗旨。众多的革 命先驱们始终做到对党忠诚、为党分忧、为党尽职、为民奋斗、为民奉献、为民造福,体现了共 产党人的政治本色。

工业废水处理工艺详解:设计计算与原理

2024 / 06 / 27

工业废水处理工艺详解:设计计算与原理   一、预处理阶段原理:预处理的主要目的是去除废水中的大颗粒物、悬浮物、部分有机物等,以减轻后续处理工艺的负担,提高废水的可生化性。设计:1.格栅与筛网在废水处理过程中扮演着至关重要的角色,它们作为预处理阶段的关键组成部分,主要用于拦截和去除废水中的大颗粒物以及漂浮物。为了满足不同的处理需求和效果,设计时需要充分考虑格栅和筛网的尺寸、形状及材质等因素。格栅通常被安装在废水处理设施的入口处,其设计原则是确保能够捕捉并阻止诸如树枝、树叶、塑料碎片等较大体积  的固体杂质进入系统内部,以防止后续设备遭受堵塞或损坏。根据废水中可能存在的大颗粒物种类和数量,格栅的间隙大小应合理设置,既要保证能有效截留这些有害物质,又要避免因间隙过小而导致废水流通受阻,影响处理效率。筛网则是一种更为精细的筛选工具,通常在格栅之后使用,进一步分离和去除废水中的小微粒、悬浮物以及部分胶体物质。筛网的目数(单位面积上的孔洞数量)是衡量其过滤精度的重要指标,不同规格的筛网可以应对不同浓度的废水处理需求。较高的目数意味着更小的孔径,能够拦截更细微的物质,从而减轻后续工艺负荷,保障整个处理流程的稳定运行。2.沉砂池:其设计目的在于通过重力沉降原理有效地去除废水中的无机颗粒。在实际应用中,沉砂池主要采用平流式或旋流式两种主流构造。平流式沉砂池结构简单,运行稳定,废水在其内部以均匀速度水平流动,通过缓慢的水流速度给予颗粒足够的沉降时间,使得废水中的无机颗粒(如砂粒、石子等)在重力作用下自然沉淀到底部,从而实现颗粒与废水的有效分离。而旋流式沉砂池则利用了离心力的作用,废水在池体内高速旋转流动,产生强烈的离心效应,使得密度较大的无机颗粒被甩向池壁,最终在池壁处形成浓缩的砂层,达到去除废水中无机颗粒的目的。    3.混凝沉淀/气浮工艺是一种常用的水处理方法,尤其是在工业废水和市政污水处理过程中。该工艺的核心在于利用混凝剂的选择性吸附和电性中和作用,将废水中的胶体颗粒、悬浮物以及部分可溶性杂质转化为不可溶性大分子化合物。当投加到废水中的混凝剂(如聚合氯化铝、聚丙烯酰胺等)与胶体粒子接触时,会发生一系列复杂的物理化学反应。例如,聚合氯化铝作为一种常见的无机混凝剂,其水解产物能强烈吸附在胶体颗粒表面,并通过压缩双电层、电性中和以及吸附架桥等机制,使原本稳定分散的胶体失去稳定性,进而凝聚成大颗粒絮体。而聚丙烯酰胺(PAM)等有机混凝剂则主要通过分子链上的活性基团与胶体粒子发生吸附作用,形成大的絮凝体。这些经混凝剂作用形成的较大絮体,具有较高的沉降性能,能够在重力作用下快速下沉,实现固液分离。在混凝沉淀过程中,通过设置专门的沉淀池,利用沉淀池中的絮体颗粒在重力作用下自然沉降,从而将澄清的液体与含絮体的污泥分离。沉淀池通常采用合适的机械搅拌或气流扰动以促进絮体成长和下沉,同时通过排泥装置定期排出污泥。对于某些难以沉淀的轻质絮体或微小悬浮物,可以采用气浮技术进行去除。气浮装置利用微气泡发生器产生大量微小气泡,这些气泡与废水中的絮体发生黏附作用,使絮体上浮至水面形成浮渣,从而实现与水体的有效分离。通过刮渣装置定期清理浮渣,可确保气浮装置连续稳定运行。计算与公式:l混凝剂投加量的精确计算是水处理过程中至关重要的步骤,这一环节通常涉及到复杂的化学动力学和化学反应机理。在实际操作中,为了确定最 优的混凝剂投加比例,必须通过严谨的实验方法进行验证和优化。通常采用的方法是在实验室环境下进行模拟水处理烧杯实验或利用小试装置进行系统性测试。l沉淀池的设计核心是依据沉淀效率公式来精确计算和配置各项关键参数,以确保废水中的固体颗粒能在特定时间内有效沉淀。该公式为:v = Q/A,这是设计沉淀池的基础理论依据。其中,v代表沉淀池内的水流速度,它是影响固体颗粒沉淀效果的重要因素;Q表示废水的流量,即单位时间内进入沉淀池的废水体积;A则是沉淀池的有效面积,即能够提供固体颗粒充分沉淀的水面面积。通过这一公式,设计者可以科学地计算出沉淀池的最 优水流速度,从而保证废水中的固体颗粒在流经沉淀池时能够有足够的时间和空间进行自然沉淀,提高污水处理的效果和效率。    二、厌氧处理原理:厌氧处理是一种利用厌氧微生物在严格无氧或低氧环境下将有机物进行分解代谢的技术过程。在这一过程中,厌氧细菌和古菌等微生物通过其独特的生物化学途径,将复杂的有机污染物转化为较为简单的物质,并在此过程中产生甲烷(CH4)和二氧化碳(CO2)等气体。其中,甲烷是一种重要的可再生能源,而二氧化碳则是主要的温室气体之一。在厌氧消化过程中,废水中的大部分有机物,包括但不限于碳水化合物、蛋白质、脂肪以及合成有机物等,在厌氧微生物的作用下被分解和转化。这些有机物首先被微生物细胞吸收并转化为细胞物质或贮存在细胞内,随后在特定的代谢途径中经过水解、发酵、产氢和产乙酸等阶段,最终生成甲烷和二氧化碳。该技术不仅能够有效去除废水中的有机污染物,实现废水的资源化利用和无害化处理,而且由于厌氧微生物对某些难降解有机物的独特降解能力,使得一些传统好氧处理难以解决的有机废水可以通过厌氧工艺得到有效处理。设计:在设计污水处理设施时,厌氧反应器作为核心组件之一,其设计和选择对于整个处理过程的效率和效果具有关键性影响。常用的厌氧反应器类型包括UASB(上 流式厌氧污泥床)反应器和IC(内部循环)厌氧反应器等。UASB反应器是一种通过自然循环和内部循环相结合的方式实现污泥与污水充分接触反应的设备。设计UASB时,需要综合考虑反应器的容积大小,这直接关系到能处理的污水流量和处理时间;污泥负荷,即单位时间内单位体积污泥床所能承受的有机污染物量,过高可能导致污泥沉降性能下降、处理效果变差,而过低则可能造成设备闲置空间过大、投资成本增加;水力停留时间,即污水在反应器内的平均停留时间,影响到污水与污泥混合接触的充分程度以及反应时间,从而影响有机物的去除效率。IC厌氧反应器则是一种集成了UASB和其他类型反应器优点的高 效厌氧处理装置,其特点在于通过特殊的结构设计实现了污泥和污水的高 效混合以及内部循环流动,以增强反应效率和生物质利用能力。在设计IC反应器时,同样需要仔细确定反应器的容积、污泥负荷以及水力停留时间等关键参数,以保证反应器能够在满足污水处理要求的同时,实现最 优的经济运行效果。    计算与公式:l污泥负荷(F/M)是污水处理过程中一个重要的参数,它用于衡量反应器内微生物对有机物的转化能力。F/M的计算公式为:F/M = Qs/(VXSV),这个公式中,Qs代表进入反应器的有机负荷,通常以化学需氧量(COD)为单位,表示反应器单位时间内需要去除的有机物的量;V则是反应器的有效容积,即反应器内部可供微生物生长和代谢的空间体积;XSV则是污泥浓度,它表示反应器内混合液中悬浮固体(VSS)的浓度,VSS通常包括微生物菌体、部分难降解有机物以及无机颗粒等。通过这个公式,可以计算出污泥负荷,从而了解反应器内微生物对有机物的处理效率。l水力停留时间(Hydraulic Retention Time,简称HRT)是污水处理工艺设计中的一个关键参数,它反映了废水在生物反应器中平均停留的时间。计算HRT的公式简单易懂,即HRT = V/Q,其中V代表反应器的有效容积,也就是反应器内部能够进行有效处理的空间体积;Q则是废水的流量,表示单位时间内进入反应器的废水体积。通过将这两个数据相除,即可得出废水在反应器内的平均停留时间,以小时(h)为单位表示。量。三、AO(反硝化-硝化)处理原理:AO工艺,全称为缺氧-好氧工艺,是一种在污水处理中应用广泛的生物脱氮除磷技术。该工艺巧妙地结合了好氧和缺氧两个不同的生物反应过程,以实现对污水中的有机物和氮化合物的高 效去除。在好氧段,由于充足的氧气供应,好氧微生物能够进行有氧呼吸,从而有效降解污水中的有机物,如生活污水、工业废水等。这一过程中,有机物被好氧微生物分解为简单的无机物,如二氧化碳和水,同时,氨氮在好氧条件下通过亚硝酸盐菌和硝酸盐菌的作用逐步氧化为亚硝酸根离子和硝酸根离子。而在缺氧段,由于溶解氧浓度较低,厌氧或微缺氧环境有利于反硝化细菌的生长与活动。反硝化细菌在这种条件下,以硝酸盐(NO3-)作为电子受体,将硝酸盐还原为亚硝酸盐、一氧化氮(NO)和最终产物氮气(N2),从而实现污水中氮的去除。这种利用硝酸盐进行反硝化脱氮的方式,不仅提高了氮的去除效率,还避免了因过度氧化导致的磷酸盐积累问题。    设计:AO工艺,即厌氧-好氧工艺,是一种常用的污水处理生物脱氮除磷工艺。其主体部分通常包括一个厌氧池和一个好氧池,这两个池子依次串联连接,共同构成AO系统。在设计该系统时,需要综合考虑多个关键参数以确保污水处理效果和系统稳定性。其中,池体容积是基础数据之一,它依据污水进水流量、污水水质指标(如BOD、COD、氨氮、磷等)、设计水温以及预期的污泥产率等因素进行合理计算。曝气量则是影响生物反应过程的重要因素,好氧池内充足的曝气供应不仅能保证活性污泥中好氧微生物的正常生长代谢,还能有效推动混合液循环流动,防止污泥沉积;而缺氧池中的微曝气或轻微搅拌则有利于兼性厌氧菌群的活性发挥和反硝化作用的进行。混合液回流比也是关键设计参数,它涉及到系统内污泥龄、污泥负荷以及脱氮除磷效率的平衡。适当的回流比可以将好氧池中的过量剩余污泥通过内回流管道输送到缺氧池,从而调节系统内的污泥浓度,并促进污泥龄的合理分布,有利于实现高 效的生物脱氮除磷作用。。计算与公式:l曝气量计算是污水处理生物反应器工艺设计中的关键环节,特别是在活性污泥法中的好氧池处理阶段。曝气的主要目的是向混合液中充分供氧,以满足微生物生长繁殖对溶解氧的需求,同时也要防止因过度曝气导致能耗浪费或污泥沉降性能下降。在好氧池内,通常要求维持一个适宜的溶解氧浓度,一般为2-4毫克/升,以满足好氧微生物的正常生理活动。这个浓度要求是基于特定的污水处理工艺条件和季节变化等因素考虑的。根据这一要求,需要借助氧转移效率公式来精确计算曝气量。l混合液回流比计算:混合液回流比是生物脱氮除磷工艺中的关键参数之一,它直接影响着生物反应器内的污泥浓度、微生物种群分布以及整体处理效果。在计算混合液回流比时,首先需要根据设定的脱氮效率目标,结合实际运行工况、水质特性(如氨氮、总氮浓度等)和污水厂的设计负荷,通过试验测定或参考行业公认的经验公式,来确定一个合适的混合液回流比。    四、深度处理原理:深度处理工艺是一种在水处理过程中进一步净化水质的关键步骤,通常在水解酸化、生物膜法、臭氧氧化等预处理技术之后应用,其目标主要是去除常规处理难以彻底清除的微量污染物、重金属离子、细菌、病毒以及有机物等有害物质,以期达到更为严格的排放标准或回用水标准。在这一阶段,常见的处理技术包括砂滤。砂滤层由均匀粒径的砂粒组成,其表面具有较高的粗糙度,能够截留水中的悬浮物、胶体颗粒以及部分大分子有机物。这些被吸附的物质在砂粒间隙中形成一层薄膜,起到过滤作用。活性炭吸附是深度处理中常用的另一种技术。活性炭具有极高的比表面积和丰富的微孔结构,能够强力吸附水中的有机污染物、余氯、色素、异味物质以及重金属离子等,从而有效提高水的感官指标,并降低潜在的健康风险。膜处理技术,如超滤(UF)、纳滤(NF)和反渗透(RO),则是通过高分子膜来实现对水分子和其他物质的分离过程。这些膜材料具有特定的孔径范围和电荷特性,可以选择性地拦截水中的各种溶解性盐类、有机物及微生物等,实现高度净化的水质效果。设计:在选择合适的深度处理工艺时,首先需要对出水水质要求进行全 面深入的分析和理解。根据不同的水质标准,如排放标准或回用水标准,确定需要去除的污染物种类和浓度,这将直接影响到深度处理工艺的设计和选择。例如,如果需要严格遵守特定的污染物排放限 制,如总氮、总磷、COD、BOD等指标,那么就需要选择能够有效去除这些污染物的深度处理工艺,如生物脱氮除磷工艺、化学沉淀法、高 级氧化技术等。在设计深度处理工艺时,需要综合考虑多个关键因素,确保处理效果的同时,也要考虑经济成本和运营管理的便利性。首先,对于处理单元的尺寸选择,需要在满足处理需求的前提下,充分考虑现场实际情况,确保设备的安装空间和运行稳定性。其次,运行参数的设定也是至关重要的,包括温度、pH值、混合搅拌强度、反应时间等,这些都会直接影响到处理效果和设备运行效率。计算与公式:    l膜处理通量的计算是一项关键技术环节,它涉及到根据所使用的膜材料的特性、有效的膜面积大小以及操作压力等核心参数,通过运用膜通量公式来精确估算单位时间内膜系统能够处理并透过液体的体积。这一计算过程对于评估膜设备的性能、优化系统配置以及预测处理能力等方面具有至关重要的作用。<span style="padding: 0px; outline: 0px; max-width: 100%; font-size: 8px; line-height: 9.6px; font-family: Wingdings; font-variant-numeric: normal; font-variant-east-asia

工业废盐处置面临问题及资源化处理技术

2024 / 06 / 07

 工业废盐概括 1、工业废盐的来源、分类及性质工业废盐来自工业生产,高盐废水处理、农药生产等均会产生大量的工业废盐,主要是指无机盐为主要成分的固体废弃物,废盐年产量超过2.0×107t ,主要分为氯化钠、硫酸钠两大类。按来自行业划分农药行业(30%)、医药(10%)、精细化工(15%)、印染等(45%),于江苏省而言,含盐废物主要来源于染料中间体(HW12)、医药中间体(HW02)、农药中间体(HW04)、煤化工(HW11)及湿法冶金(HW48)。根据工业废盐的成分,可将工业废盐分为单一盐与混合盐。单一盐为单一组分的盐;混合盐是指两种及两种以上组分的盐,工业废盐中的有机物含量与产生行业有关。江苏调研显示,工业园区暂存的废盐中,混盐占80%,剩下的20% 为单盐。工业废盐具有成分复杂、来源广泛、毒性大等特点,虽在危废名录中并未单独列出,但 2016 年《国家危险废物名录》明确将化学合成原料药生产过程中产生的蒸馏及反应残余物、化学合成原料药生产过程中产生的废母液及反应基废物划定为危险废物。因此工业废盐不仅破坏生态环境,祸及人畜,一旦污盐中可溶性盐及杂质严重引起土壤盐化,危及周边农、林、牧业的生存与发展,甚至对周边水源和地下水造成严重污染,危害极大。2、工业废盐处置面临问题针对工业废盐的性质,因此其需要得到妥善处置,在国外,这种副产废盐大多采用无害化处理后直接将盐向海洋倾倒,这种处理方式有很大的局限性,一是企业必须临海或离海岸不远,二是副产污盐中不含有害的有机和无机杂质。事实上,化工生产中副产的污盐依据产品的不同,污盐中的成分也不同,有时还有较大的差别,使副产污盐的处理和利用加大了难度。国内工业废盐的处置技术有:填埋法、高温氧化法、盐洗法等。目前填埋法是我国工业废杂盐的主要处置手段,但废盐填埋存在以下几个问题:1投资大占地多依据危险废物填埋污染控制标准的相关规定,水溶性盐总量含量≥ 10% 的废物是不能进入柔性填埋场,因此废盐必须进入刚性填埋场。对于同等规模填埋,刚性填埋场投资比柔性填埋场大,占地面积也相对大。2刚性填埋场国内少目前国内大部分填埋场是柔性填埋性,废盐填埋受限,企业大部分废盐也无填埋出路。编者意见:废盐刚性填埋未消除废盐危险特性,废盐污染隐患未得到有效根治。3填埋成本高目前废盐的填埋吨成本高达 4000 元以上,企业难以承受。综上所述,工业废盐不易填埋填埋,建议资源化。编者意见:2021年危废废盐刚性填埋市场收费已呈下降趋势,部分地区、部分废盐填埋经营企业已下调收费,个别收费价格已到3500元/吨以下。工业废盐资源化处理技术根据废盐来源可知,工业废盐中含有毒性大的有机物,无论对于单一盐还是混合盐,要实现废盐资源化,必须先将废盐中的有机物去除,进行无害化处理,然后再分盐。1、去有机物根据废盐中的有机物含量多少,其处置技术常用的分为两类:1高温氧化法。该法针对废盐中有机物含量高,将废盐高温处理,使废盐中的有机杂质在高温下氧化成 CO2、CO、H2O 气体,从而达到去除有机杂质的目的,此法的关键在于分解氧化燃烧设备的选择。编者意见:有机废盐中有害有机物去除(热化学处理设备)关键在于能耗(辅助燃料单位用量)、耐火材料性能、热化学处理设备处理效率。2盐洗法。盐洗法对饱和副产品溶液进行清洗,将副产品中的有机物等物质溶解于清洗溶液中,从而达到净化副产品的目的。该法比较适用于杂质含量少且杂质成分单一的副产废盐。2、混合盐分离去除有机物得到的混合盐,仍是多种成分的无机物,例如硫酸钠和氯化钠、氯化钾和氯化钠、氯化钾,需要进一步处理得到单一盐,无机盐的分离需要借助三元体系相图分析,可分析在整个蒸发过程中,物料含量间的关系可由杠杆规则进行确定。工业废盐资源化思路 目前国内尚无工业废盐资源化的成熟技术,但在废盐资源化已开展相关工作。如推动废盐处置技术规范、新建废盐处置企业项目等,后期要想实现工业废盐的资源化处置,技术的突破点在于以下方面。1、产品有依据目前工业废盐资源化缺乏标准的支撑,后期需要标准支撑和政策引导。编者意见:2020年国内主管部门、协会、科研院所、环保企业,启动废盐资源化产品团体标准立项编制,在煤化工废盐利用已有团体标准发布,国内危险废物废盐综合利用产品团体标准发布亦在近期。2、工艺稳定性好盐的熔点和沸点低,例如:氯化钠的熔点 801℃,需要解决运行过程设备的黏性和腐蚀性问题。3、处置成本合理需要合理控制运行成本,降低废盐的处置费用,以便市场推广和应用。结论    综合考虑,工业废盐资源化可行方案建议:有机物含量少且单一的废盐:盐洗 + 除杂(除杂质与分盐)+ 结晶,得到符合国家产品标准的盐;对于有机物含量高、规模大且混合盐:运行稳定的高温氧化 + 除杂(除杂质与分盐)+ 结晶,得到符合国家产品标准的盐。同时,随着工业废盐资源化项目的不断投入,现有的工艺、设备问题将不断取得改进和完善,未来对工业废盐必将形成成熟且稳定的资源化利用技术。

硫酸盐废水的厌氧处理技术

2024 / 05 / 29

一、工业废水中硫酸盐的来源高含硫酸根废水,按照其排放源可以分为两类:一是含硫酸盐的采矿废水,二是一些发酵、制药,轻工行业的排水。我国的矿山资源中多数是煤矿、硫铁矿和多金属硫化矿,在采矿过程中,矿石中含有的硫及硫化物被氧化,形成硫酸盐。矿山废水中SO42-浓度一般大于1000mg/L,但由于废水中有机物含量低,不宜用生化法来处理。另一类含有的硫酸根工业废水,常见的有:味精废水、石油精炼酸性废水、食用油生产废水、制药废水、印染废水、制糖废水、糖蜜废水、造纸和制浆废水。其SO42-主要来自于生产过程中加入的硫酸、亚硫酸及其盐类的辅助原料。此类废水在含有高浓度SO42-的同时,一般还含有较高的有机质。一般需要用生化法进行处理,并常常用到厌氧生化处理工艺。二、含硫酸盐废水厌氧生化处理的问题当含硫酸盐有机废水进行厌氧生物处理时,随着有机物降解,往往伴随着硫酸盐还原作用发生。这个过程中,SO42-作为最终电子受体,参加有机物的分解代谢。小部分被还原的硫用于合成微生物细胞组分(称为同化硫酸盐还原作用),大部分则以H2S形式释放到细胞体外(称为异化硫酸盐还原作用)。同化硫酸盐还原作用可由多种微生物引起,而异化硫酸盐还原作用则是专一性的由硫酸盐还原菌(SRB)引起的。一般在厌氧生化处理系统中,由SO42-还原所产生的H2S可能引起以下问题:【1】废水中的有机物一部分要消耗于SO42-的还原,因而不能转化为CH4,减少了厌氧反应器的甲烷产量,从而降低了其与好氧系统相比的优势。【2】游离的H2S对厌氧系统中的产甲烷菌、产酸菌甚至硫酸盐还原菌均有抑制作用,如果游离H2S浓度过高,势必影响到厌氧反应的负荷和处理效率。【3】存在于厌氧出水中的H2S,体现COD,使得厌氧反应器COD去除率降低。【4】由反应器和出水释放出的H2S气体,引起恶臭,污染环境,并且可能造成中毒事件。【5】转移到沼气部分的H2S,会引起沼气利用设备的腐蚀,为避免这一问题需要增加额外的投资或者使运行管理费用显著增加。三、厌氧处理中硫酸盐和H2S的控制技术〖一〗物理化学法【1】稀释废水中的硫酸根(不解释)【2】调高ph值:H2S的电离常数大约为6.8-7.0,接近厌氧反应器的运行pH值,增加pH值会显著改变H2S到HS-的电离。每提高0.3pH单位,HS-与H2S的比值增加一倍,从而会降低气体以及液体中的未解离H2S浓度,最终起到降低抑制性的作用。【3】气体吹脱法:由于pH值较低时,溶液中溶解性硫化物的大部分将以H2S的形式存在。有研究者利用这一性质,在单项厌氧处理系统中安装循环气体吹脱装置,将硫化物吹脱,以减轻对产甲烷过程的抑制作用。主要吹脱工艺有两种:(1)内部吹脱法:在厌氧反应器中产生的沼气(甲烷)通过气提作用去除硫化物,再对沼气进行净化。其最大缺点是吹脱气量不易控制,维持其正常吹脱有一定困难。(2)外部吹脱法:这种方法操作比较简单,只对反应器出水进行吹脱,去除H2S后将部分处理水回流,可对进水起到稀释作用。出水通过一个外部吹脱柱循环更有效,加入铁盐对去除溶液中的硫化物十分有效。从经济角度考虑应投加三价铁盐,这样会多去除50%的硫化物。加入铁盐后,硫转化为FeS沉淀,会在厌氧滤器,UASB,厌氧接触等工艺中造成无机物积累。但是在外部吹托中采用投加铁盐并沉淀后出水循环会减轻这一问题。有报道表明,在厌氧出水中通入氧气,空气量相当于10%的沼气产量,可以有效地去除沼气中90%的H2S,而且所需费用很低。但是该方法对设备和空气管的设计要求很高。厌氧脱硫出水气提分离过程,受溶液pH影响很大,当废水pH条件控制在6.6以下时,废水硫化物分离效果可达到84%以上;而溶液pH维持在7.0-7.5时,气提效果还不足65%。由于厌氧出水基本呈中性,通过投加酸调整pH值是不实际的,可以用净化脱硫处理后富含CO2的沼气为吹脱气源,借助CO2形成缓冲系统使系统的pH维持在一个比较理想的环境。试验条件下,废水硫化物气提去除效果可达80%以上。但是,以吹脱法去除硫化物的厌氧工艺并没有彻底消除硫酸盐还原对产甲烷菌(MPB)的抑制作用,因为反应器中仍有相当量的H2S存在。(3)预吹脱法:对于来水中既含有H2S或者SO32-的废水,可以直接通过气体吹脱来去除,但是在大多数情况下,SO32-不能得到完全的吹脱。生物膜法工艺中则可能影响生物挂膜。同时,CaSO4沉淀法只能对SO42-进行一定量的消减,处理后很可能仍有大量的SO42-进入后续厌氧工艺。而且在石灰乳的配置中,容易出现两个问题:溶药池沉积物多,需要频繁人工清理;加药泵容易堵塞损坏。〖二〗生物处理法【1】 采用两相厌氧工艺:厌氧反应可以分为水解酸化和产甲烷两个过程,根据两个反应的微生物种群差异,设立两个独立的反应器,通过控制运行条件,保证两类群的细菌在各自的反应器中获得最 佳的生长条件,使整个系统获得较高的处理能力和运行稳定性。在两相厌氧工艺的启发下,有学者试图将硫酸盐还原作用控制在产酸阶段,与普通的产酸过程同时完成,然后将出水中的硫化物全部去除,最 后令其进入产甲烷反应器进行产甲烷反应。这一设想,已经由多位研究者的实验结果证实为可行。比如:Postgate曾通过实验指出,在酸性条件下,产酸作用和硫酸盐还原作用可以同时进行;Czako和Reis等人的研究结果也表明了这一点。将硫酸盐还原作用控制在产酸阶段具有以下优点:(1)发酵型细菌比产甲烷菌(MPB)能忍受较高的硫化物浓度,所以产酸作用可以与硫酸盐还原作用同时进行,不会影响产酸过程。(2)硫酸盐还原菌(SRB)特别是不完全氧化型硫酸盐还原菌本身就是一种产酸菌,它可以利用普通产酸菌的某些中间产物如乳酸、丙酮酸、丙酸等,将其进一步降解为乙酸,故将硫酸盐还原作用与产酸作用控制在一个反应器中进行,在一定程度上有利于提高产酸相的酸化率,使产算类型像乙酸型发展,有利于后续的产甲烷反应。(3)产酸相反应器处于弱酸性状态,生成的硫化物主要以H2S的形式存在,有利于其进一步去除。(4)硫酸盐还原作用与产甲烷作用分别在两个反应器内进行,避免了SRB和MPB之间的基质竞争。硫酸盐还原作用的最终产物——硫化物,如设法在两相之间去除,可不与MPB直接接触,不会对MPB产生毒害作用。而且大部分硫酸盐已在产酸相中被去除,同时又有充足的甲烷前体物来产生甲烷,保证了较高的产甲烷率,形成的沼气中H2S含量少,回收利用方便。【1.1】生物种群空间分离的工艺:主要是通过生物截留技术使不同类型的菌种在厌氧处理的流程中合理分布,使得SRB先还原SO42-,H2S部分脱除后渐渐开始产甲烷。其基本原理与两相厌氧相同,但是微生物种群的分布是渐变的。如厌氧折流板工艺(ABR),下向流生物滤池,在水流向的前端,完成SO42-还原后部分H2S可以脱出水相,水流向后端的MPB不会或较少受到H2S的影响。【1.5】两相厌氧+微电解组合工艺:利用SRB在第 一厌氧反应器中将SO42-还原为H2S,再经过铁碳微电解反应池使之与Fe2-离子结合形成FeS沉淀沉淀去除大部分硫酸盐,使第二厌氧反应器中的产甲烷过程不受抑制。同时可以增加微电解之后到第 一厌氧反应器之前的回流,在高含硫酸盐废水中,回流可以使进入第 一厌氧反应器的SO42-浓度大为稀释,从而避免硫酸盐还原过程中H2S对SRB的抑制,以增加SO42-去除率。工程中的问题在于,铁碳微电解技术应用尚不十分广泛,其本身的板结,铁泥积累等问题有待更好的解决。【2】采用高温厌氧工艺:Speece提出可以采用高温厌氧工艺减少硫化氢的抑制作用。这种考虑基于两点:首先是在高温下,H2S溶解度低,不易在水相中积存,从而减少了对MPB的抑制。另外,Parkin推测缺少高温的SRB菌属。Speece等人在高温厌氧条件处理高浓度硫酸盐的橄榄油废水,观察到在气相的H2S浓度很低,并且出水中很难检测到SRB菌。但是Parkin的推测与高温条件下硫酸根可以得到还原的事实是不一致的。Visser等人观察到,55°C产生的H2一般被SRB完全利用,它们也与MPB竞争乙酸,有60%的COD被MPB利用,40%被SRB利用。【3】 部分高含硫酸根废水超越厌氧:把生产中水量较少,COD浓度低但是SO42-含量高的废水直接引入好氧,或者是采用高 效的好氧反应器与二级好氧工艺结合,避免SO42-还原成为H2S。

螺旋沉降离心机处理浮渣的特点

2024 / 03 / 29

  螺旋沉降离心机在处理浮渣时往往表现出一些特点,常州滤帮给大家分享螺旋沉降离心机处理浮渣的特点,希望能帮助我们更深入的了解设备。要知道,只有你有了充分的认识,你才能在实践中充足发挥它的实际作用和价值。  螺旋沉降离心机处理浮渣的特点可以概括为七个方面。  1.工艺性强。因为这台设备选用的控制系统很好,在运行中可以根据物料的情况随时自动调整,达到了处理成效。  2.噪音低。在结构设计上,特别选择了双层加隔音层设计。因此,在作业过程中,公告的噪音很小,对作业现场环境的影响也很小。  3.是自动化程度高。卧螺离心机在运行过程中,无论是进料、分离还是出料,每一个环节都是高速连续自动进行的,用户使用起来方便简单。  4.这种设备的处理能力很大。因为结构改进了,可以一起处理更多的物料。  5.不会对现场的工作环境造成太大的影响。由于设备的整个作业过程都是在完全密闭的条件下进行的,无需担心作业现场的污染,完成了清洁生产。  6.该设备的工作性能很稳定,因此可以保持较高的工作效率。  7.螺旋沉降离心机是安全的,很可靠。由于设备特别配备了多重保护装置,设备具有很高的安全功能,用户可以放心使用。

以练筑防,筑牢安全防线丨常州滤帮开展应急预案演练

2024 / 03 / 08

    为进一步推动常州滤帮安全生产应急管理工作,确保应急预案的实效性,提高各部门之间的应急配合能力和应对突发事件的应急处理能力,特组织各部门开展消防专项应急预案演练。现场演练开始前,先进行了针对事故场景的应急培训,充分认识应急预案及演练工作的重要性,应急预案和应…为进一步推动公司安全生产应急管理工作,确保应急预案的实效性,提高各部门之间的应急配合能力和应对突发事件的应急处理能力,特组织各部门开展消防专项应急预案演练。现场演练开始前,先进行了针对事故场景的应急培训,充分认识应急预案及演练工作的重要性,应急预案和应急演练工作是防控安全风险、减少事故损失的重要抓手和关键环节。各环节配齐救援装备物资,优化演练科目,提高演练频次,确保一旦发生险情,能及时应对处置。演练时模拟食堂内发生着火,发现火情后,立即启动消防应急疏散预案,同时迅速拨打“119”报警。灭火组、疏散组等成员按照分工,有条不紊地切断非消防电源、疏散楼内职工等,整个流程井然有序,配合默契。随后,由安全部相关人员向大家详细介绍了火灾种类,重 点讲解并示范了灭火器的使用方法,现场员工逐一上场进行了实际操作。针对大家在使用过程中存在的问题,进行了详细指导。通过本次综合应急预案演练,增强了大家的消防安全意识,对灭火技巧的要领有了深刻的记忆,对消防灭火环节有了更深切的体会。今后定会强化定期检查工作,提升专 业人员的专 业素质和技能,继续建立和完善安全管理制度和应急演练预案,抓好隐患的整改落实。
1234 共45条 4页,到第 确定
首页 电话 TOP